

Welcome to ProcRunner’s documentation!

Contents:

	ProcRunner
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	API

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Contributors

	History
	2.3.2 (2022-01-28)

	2.3.1 (2021-10-25)

	2.3.0 (2020-10-29)

	2.2.0 (2020-09-07)

	2.1.0 (2020-09-05)

	2.0.0 (2020-06-24)

	1.1.0 (2019-11-04)

	1.0.2 (2019-05-20)

	1.0.1 (2019-04-16)

	1.0.0 (2019-03-25)

	0.9.1 (2019-02-22)

	0.9.0 (2018-12-07)

	0.8.1 (2018-12-04)

	0.8.0 (2018-10-09)

	0.7.2 (2018-10-05)

	0.7.1 (2018-09-03)

	0.7.0 (2018-05-13)

	0.6.1 (2018-05-02)

	0.6.0 (2018-05-02)

	0.5.1 (2018-04-27)

	0.5.0 (2018-04-26)

	0.4.0 (2018-04-23)

	0.3.0 (2018-04-17)

	0.2.0 (2018-03-12)

	0.1.0 (2018-03-12)

Indices and tables

	Search Page

ProcRunner

[image: PyPI release]
 [https://pypi.python.org/pypi/procrunner][image: Conda Version]
 [https://anaconda.org/conda-forge/procrunner][image: Build status]
 [https://github.com/DiamondLightSource/python-procrunner/commits/master][image: Build status]
 [https://ci.appveyor.com/project/Anthchirp/python-procrunner][image: Documentation Status]
 [https://procrunner.readthedocs.io/en/latest/?badge=latest][image: Supported Python versions]
 [https://pypi.python.org/pypi/procrunner][image: Code style: black]
 [https://github.com/ambv/black]Versatile utility function to run external processes

	Free software: BSD license

	Documentation: https://procrunner.readthedocs.io.

Features

	runs an external process and waits for it to finish

	does not deadlock, no matter the process stdout/stderr output behaviour

	returns the exit code, stdout, stderr (separately, both as bytestrings),
as a subprocess.CompletedProcess object

	process can run in a custom environment, either as a modification of
the current environment or in a new environment from scratch

	stdin can be fed to the process

	stdout and stderr is printed by default, can be disabled

	stdout and stderr can be passed to any arbitrary function for
live processing (separately, both as unicode strings)

	optionally enforces a time limit on the process, raising a
subprocess.TimeoutExpired exception if it is exceeded.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install ProcRunner, run this command in your terminal:

$ pip install procrunner

This is the preferred method to install ProcRunner, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for ProcRunner can be downloaded from the Github repo [https://github.com/DiamondLightSource/python-procrunner].

You can either clone the public repository:

$ git clone git://github.com/DiamondLightSource/python-procrunner

Or download the tarball [https://github.com/DiamondLightSource/python-procrunner/tarball/master]:

$ curl -OL https://github.com/DiamondLightSource/python-procrunner/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use ProcRunner in a project:

import procrunner
result = procrunner.run(['/bin/ls', '/some/path/containing spaces'])

To test for successful completion:

assert not result.returncode
assert result.returncode == 0 # alternatively
result.check_returncode() # raises subprocess.CalledProcessError()

To test for no STDERR output:

assert not result.stderr
assert result.stderr == b'' # alternatively

To run with a specific environment variable set:

result = procrunner.run(..., environment_override={ 'VARIABLE': 'value' })

To run with a specific environment:

result = procrunner.run(..., environment={ 'VARIABLE': 'value' })

To run in a specific directory:

result = procrunner.run(..., working_directory='/some/path')

API

	
class procrunner.ReturnObject(exitcode=None, command=None, stdout=None, stderr=None, **kw)[source]

	Bases: subprocess.CompletedProcess

A subprocess.CompletedProcess-like object containing the executed
command, stdout and stderr (both as bytestrings), and the exitcode.
The check_returncode() function raises an exception if the process
exited with a non-zero exit code.

	
procrunner.run(command, timeout=None, debug=None, stdin=None, print_stdout=True, print_stderr=True, callback_stdout=None, callback_stderr=None, environment=None, environment_override=None, win32resolve=True, working_directory=None, raise_timeout_exception=False)[source]

	Run an external process.

File system path objects (PEP-519) are accepted in the command, environment,
and working directory arguments.

	Parameters

	
	command (array) – Command line to be run, specified as array.

	timeout – Terminate program execution after this many seconds.

	debug (boolean) – Enable further debug messages. (deprecated)

	stdin – Optional bytestring that is passed to command stdin,
or subprocess.DEVNULL to disable stdin.

	print_stdout (boolean) – Pass stdout through to sys.stdout.

	print_stderr (boolean) – Pass stderr through to sys.stderr.

	callback_stdout – Optional function which is called for each
stdout line.

	callback_stderr – Optional function which is called for each
stderr line.

	environment (dict) – The full execution environment for the command.

	environment_override (dict) – Change environment variables from the
current values for command execution.

	win32resolve (boolean) – If on Windows, find the appropriate executable
first. This allows running of .bat, .cmd, etc.
files without explicitly specifying their
extension.

	working_directory (string) – If specified, run the executable from
within this working directory.

	raise_timeout_exception (boolean) – Forward compatibility flag. If set
then a subprocess.TimeoutExpired exception is raised
instead of returning an object that can be checked
for a timeout condition. Defaults to False, will be
changed to True in a future release.

	Returns

	The exit code, stdout, stderr (separately, as byte strings)
as a subprocess.CompletedProcess object.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/DiamondLightSource/python-procrunner/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ProcRunner could always use more documentation, whether as part of the
official ProcRunner docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/DiamondLightSource/python-procrunner/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up procrunner for local development.

	Fork the procrunner repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/python-procrunner.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv procrunner
$ cd procrunner/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 procrunner tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in HISTORY.rst/README.rst.

Tips

To run a subset of tests:

$ py.test tests.test_procrunner

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

	Markus Gerstel

Contributors

None yet. Why not be the first?

History

2.3.2 (2022-01-28)

	The run() function now understands stdin=subprocess.DEVNULL to close the subprocess stdin,
rather than to connect through the existing stdin, which is the current default

2.3.1 (2021-10-25)

	Add Python 3.10 support

2.3.0 (2020-10-29)

	Add Python 3.9 support, drop Python 3.5 support

	Fix a file descriptor leak on subprocess execution

2.2.0 (2020-09-07)

	Calling the run() function with unnamed arguments (other than the command
list as the first argument) is now deprecated. As a number of arguments
will be removed in a future version the use of unnamed arguments will
cause future confusion. Use explicit keyword arguments instead (#62). [https://github.com/DiamondLightSource/python-procrunner/pull/62]

	The run() function debug argument has been deprecated (#63). [https://github.com/DiamondLightSource/python-procrunner/pull/63]
This is only used to debug the NonBlockingStream* classes. Those are due
to be replaced in a future release, so the argument will no longer serve
a purpose. Debugging information remains available via standard logging
mechanisms.

	Final version supporting Python 3.5

2.1.0 (2020-09-05)

	Deprecated array access on the return object (#60). [https://github.com/DiamondLightSource/python-procrunner/pull/60]
The return object will become a subprocess.CompletedProcess in a future
release, which no longer allows array-based access. For a translation table
of array elements to attributes please see the pull request linked above.

	Add a new parameter ‘raise_timeout_exception’ (#61). [https://github.com/DiamondLightSource/python-procrunner/pull/61]
When set to ‘True’ a subprocess.TimeoutExpired exception is raised when the
process runtime exceeds the timeout threshold. This defaults to ‘False’ and
will be set to ‘True’ in a future release.

2.0.0 (2020-06-24)

	Python 3.5+ only, support for Python 2.7 has been dropped

	Deprecated function alias run_process() has been removed

	Fixed a stability issue on Windows

1.1.0 (2019-11-04)

	Add Python 3.8 support, drop Python 3.4 support

1.0.2 (2019-05-20)

	Stop environment override variables leaking into the process environment

1.0.1 (2019-04-16)

	Minor fixes on the return object (implement equality,
mark as unhashable)

1.0.0 (2019-03-25)

	Support file system path objects (PEP-519) in arguments

	Change the return object to make it similar to
subprocess.CompletedProcess, introduced with Python 3.5+

0.9.1 (2019-02-22)

	Have deprecation warnings point to correct code locations

0.9.0 (2018-12-07)

	Trap UnicodeEncodeError when printing output. Offending characters
are replaced and a warning is logged once. Hints at incorrectly set
PYTHONIOENCODING.

0.8.1 (2018-12-04)

	Fix a few deprecation warnings

0.8.0 (2018-10-09)

	Add parameter working_directory to set the working directory
of the subprocess

0.7.2 (2018-10-05)

	Officially support Python 3.7

0.7.1 (2018-09-03)

	Accept environment variable overriding with numeric values.

0.7.0 (2018-05-13)

	Unicode fixes. Fix crash on invalid UTF-8 input.

	Clarify that stdout/stderr values are returned as bytestrings.

	Callbacks receive the data decoded as UTF-8 unicode strings
with unknown characters replaced by ufffd (unicode replacement
character). Same applies to printing of output.

	Mark stdin broken on Windows.

0.6.1 (2018-05-02)

	Maintenance release to add some tests for executable resolution.

0.6.0 (2018-05-02)

	Fix Win32 API executable resolution for commands containing a dot (‘.’) in
addition to a file extension (say ‘.bat’).

0.5.1 (2018-04-27)

	Fix Win32API dependency installation on Windows.

0.5.0 (2018-04-26)

	New keyword ‘win32resolve’ which only takes effect on Windows and is enabled
by default. This causes procrunner to call the Win32 API FindExecutable()
function to try and lookup non-.exe files with the corresponding name. This
means .bat/.cmd/etc.. files can now be run without explicitly specifying
their extension. Only supported on Python 2.7 and 3.5+.

0.4.0 (2018-04-23)

	Python 2.7 support on Windows. Python3 not yet supported on Windows.

0.3.0 (2018-04-17)

	run_process() renamed to run()

	Python3 compatibility fixes

0.2.0 (2018-03-12)

	Procrunner is now Python3 3.3-3.6 compatible.

0.1.0 (2018-03-12)

	First release on PyPI.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 procrunner	

Index

 P
 | R

P

 	
 	procrunner (module)

R

 	
 	ReturnObject (class in procrunner)

 	
 	run() (in module procrunner)

 All modules for which code is available

	procrunner

 Source code for procrunner

import codecs
import functools
import io
import logging
import os
import select
import shutil
import subprocess
import sys
import time
import timeit
import warnings
from multiprocessing import Pipe
from threading import Thread

#
run() - A function to synchronously run an external process, supporting
the following features:
#
- runs an external process and waits for it to finish
- does not deadlock, no matter the process stdout/stderr output behaviour
- returns the exit code, stdout, stderr (separately) as a
subprocess.CompletedProcess object
- process can run in a custom environment, either as a modification of
the current environment or in a new environment from scratch
- stdin can be fed to the process
- stdout and stderr is printed by default, can be disabled
- stdout and stderr can be passed to any arbitrary function for
live processing
- optionally enforces a time limit on the process
#
#
Usage example:
#
import procrunner
result = procrunner.run(['/bin/ls', '/some/path/containing spaces'])
#
Returns:
#
ReturnObject(
args=('/bin/ls', '/some/path/containing spaces'),
returncode=2,
stdout=b'',
stderr=b'/bin/ls: cannot access /some/path/containing spaces: No such file or directory\n'
)
#
which also offers (albeit deprecated)
#
result.runtime == 0.12990689277648926
result.time_end == '2017-11-12 19:54:49 GMT'
result.time_start == '2017-11-12 19:54:49 GMT'
result.timeout == False

__author__ = """Markus Gerstel"""
__email__ = "scientificsoftware@diamond.ac.uk"
__version__ = "2.3.2"

logger = logging.getLogger("procrunner")
logger.addHandler(logging.NullHandler())

class _LineAggregator:
 """
 Buffer that can be filled with stream data and will aggregate complete
 lines. Lines can be printed or passed to an arbitrary callback function.
 The lines passed to the callback function are UTF-8 decoded and do not
 contain a trailing newline character.
 """

 def __init__(self, print_line=False, callback=None):
 """Create aggregator object."""
 self._buffer = ""
 self._print = print_line
 self._callback = callback
 self._decoder = codecs.getincrementaldecoder("utf-8")("replace")

 def add(self, data):
 """
 Add a single character to buffer. If one or more full lines are found,
 print them (if desired) and pass to callback function.
 """
 data = self._decoder.decode(data)
 if not data:
 return
 self._buffer += data
 if "\n" in data:
 to_print, remainder = self._buffer.rsplit("\n")
 if self._print:
 try:
 print(to_print)
 except UnicodeEncodeError:
 print(to_print.encode(sys.getdefaultencoding(), errors="replace"))
 if not hasattr(self, "_warned"):
 logger.warning("output encoding error, characters replaced")
 setattr(self, "_warned", True)
 if self._callback:
 self._callback(to_print)
 self._buffer = remainder

 def flush(self):
 """Print/send any remaining data to callback function."""
 self._buffer += self._decoder.decode(b"", final=True)
 if self._buffer:
 if self._print:
 print(self._buffer)
 if self._callback:
 self._callback(self._buffer)
 self._buffer = ""

class _NonBlockingStreamReader:
 """Reads a stream in a thread to avoid blocking/deadlocks"""

 def __init__(self, stream, output=True, debug=False, notify=None, callback=None):
 """Creates and starts a thread which reads from a stream."""
 self._buffer = io.BytesIO()
 self._closed = False
 self._closing = False
 self._debug = debug
 self._stream = stream
 self._terminated = False

 def _thread_write_stream_to_buffer():
 la = _LineAggregator(print_line=output, callback=callback)
 char = True
 while char:
 if select.select([self._stream], [], [], 0.1)[0]:
 char = self._stream.read(1)
 if char:
 self._buffer.write(char)
 la.add(char)
 else:
 if self._closing:
 break
 self._stream.close()
 self._terminated = True
 la.flush()
 if self._debug:
 logger.debug("Stream reader terminated")
 if notify:
 notify()

 def _thread_write_stream_to_buffer_windows():
 line = True
 while line:
 line = self._stream.readline()
 if line:
 self._buffer.write(line)
 if output or callback:
 linedecode = line.decode("utf-8", "replace")
 if output:
 print(linedecode)
 if callback:
 callback(linedecode)
 self._stream.close()
 self._terminated = True
 if self._debug:
 logger.debug("Stream reader terminated")
 if notify:
 notify()

 if os.name == "nt":
 self._thread = Thread(target=_thread_write_stream_to_buffer_windows)
 else:
 self._thread = Thread(target=_thread_write_stream_to_buffer)
 self._thread.daemon = True
 self._thread.start()

 def has_finished(self):
 """
 Returns whether the thread reading from the stream is still alive.
 """
 return self._terminated

 def get_output(self):
 """
 Retrieve the stored data in full.
 This call may block if the reading thread has not yet terminated.
 """
 self._closing = True
 if not self.has_finished():
 if self._debug:
 # Main thread overtook stream reading thread.
 underrun_debug_timer = timeit.default_timer()
 logger.warning("NBSR underrun")
 self._thread.join()
 if not self.has_finished():
 if self._debug:
 logger.debug(
 "NBSR join after %f seconds, underrun not resolved",
 timeit.default_timer() - underrun_debug_timer,
)
 raise Exception("thread did not terminate")
 if self._debug:
 logger.debug(
 "NBSR underrun resolved after %f seconds",
 timeit.default_timer() - underrun_debug_timer,
)
 if self._closed:
 raise Exception("streamreader double-closed")
 self._closed = True
 data = self._buffer.getvalue()
 self._buffer.close()
 return data

class _NonBlockingStreamWriter:
 """Writes to a stream in a thread to avoid blocking/deadlocks"""

 def __init__(self, stream, data, debug=False, notify=None):
 """Creates and starts a thread which writes data to stream."""
 self._buffer = data
 self._buffer_len = len(data)
 self._buffer_pos = 0
 self._max_block_len = 4096
 self._stream = stream
 self._terminated = False

 def _thread_write_buffer_to_stream():
 while self._buffer_pos < self._buffer_len:
 if (self._buffer_len - self._buffer_pos) > self._max_block_len:
 block = self._buffer[
 self._buffer_pos : (self._buffer_pos + self._max_block_len)
]
 else:
 block = self._buffer[self._buffer_pos :]
 try:
 self._stream.write(block)
 except OSError as e:
 if (
 e.errno == 32
): # broken pipe, ie. process terminated without reading entire stdin
 self._stream.close()
 self._terminated = True
 if notify:
 notify()
 return
 raise
 self._buffer_pos += len(block)
 if debug:
 logger.debug("wrote %d bytes to stream", len(block))
 self._stream.close()
 self._terminated = True
 if notify:
 notify()

 self._thread = Thread(target=_thread_write_buffer_to_stream)
 self._thread.daemon = True
 self._thread.start()

 def has_finished(self):
 """Returns whether the thread writing to the stream is still alive."""
 return self._terminated

 def bytes_sent(self):
 """Return the number of bytes written so far."""
 return self._buffer_pos

 def bytes_remaining(self):
 """Return the number of bytes still to be written."""
 return self._buffer_len - self._buffer_pos

def _path_resolve(obj):
 """
 Resolve file system path (PEP-519) objects to strings.

 :param obj: A file system path object or something else.
 :return: A string representation of a file system path object or, for
 anything that was not a file system path object, the original
 object.
 """
 if obj and hasattr(obj, "__fspath__"):
 return obj.__fspath__()
 return obj

def _windows_resolve(command, path=None):
 """
 Try and find the full path and file extension of the executable to run.
 This is so that e.g. calls to 'somescript' will point at 'somescript.cmd'
 without the need to set shell=True in the subprocess.

 :param command: The command array to be run, with the first element being
 the command with or w/o path, with or w/o extension.
 :return: Returns the command array with the executable resolved with the
 correct extension. If the executable cannot be resolved for any
 reason the original command array is returned.
 """
 if not command or not isinstance(command[0], str):
 return command

 found_executable = shutil.which(command[0], path=path)
 if found_executable:
 logger.debug("Resolved %s as %s", command[0], found_executable)
 return (found_executable, *command[1:])

 if "\\" in command[0]:
 # Special case. shutil.which may not detect file extensions if a full
 # path is given, so try to resolve the executable explicitly
 for extension in os.getenv("PATHEXT").split(os.pathsep):
 found_executable = shutil.which(command[0] + extension, path=path)
 if found_executable:
 return (found_executable, *command[1:])

 logger.warning("Error trying to resolve the executable: %s", command[0])
 return command

[docs]class ReturnObject(subprocess.CompletedProcess):
 """
 A subprocess.CompletedProcess-like object containing the executed
 command, stdout and stderr (both as bytestrings), and the exitcode.
 The check_returncode() function raises an exception if the process
 exited with a non-zero exit code.
 """

 def __init__(self, exitcode=None, command=None, stdout=None, stderr=None, **kw):
 super().__init__(
 args=command, returncode=exitcode, stdout=stdout, stderr=stderr
)
 self._extras = {
 "timeout": kw.get("timeout"),
 "runtime": kw.get("runtime"),
 "time_start": kw.get("time_start"),
 "time_end": kw.get("time_end"),
 }

 def __getitem__(self, key):
 warnings.warn(
 "dictionary access to a procrunner return object is deprecated",
 DeprecationWarning,
 stacklevel=2,
)
 if key in self._extras:
 return self._extras[key]
 if not hasattr(self, key):
 raise KeyError(f"Unknown attribute {key}")
 return getattr(self, key)

 def __eq__(self, other):
 """Override equality operator to account for added fields"""
 if type(other) is type(self):
 return self.__dict__ == other.__dict__
 return False

 def __hash__(self):
 """This object is not immutable, so mark it as unhashable"""
 return None

 @property
 def cmd(self):
 warnings.warn(
 "procrunner return object .cmd is deprecated, use .args",
 DeprecationWarning,
 stacklevel=2,
)
 return self.args

 @property
 def command(self):
 warnings.warn(
 "procrunner return object .command is deprecated, use .args",
 DeprecationWarning,
 stacklevel=2,
)
 return self.args

 @property
 def exitcode(self):
 warnings.warn(
 "procrunner return object .exitcode is deprecated, use .returncode",
 DeprecationWarning,
 stacklevel=2,
)
 return self.returncode

 @property
 def timeout(self):
 warnings.warn(
 "procrunner return object .timeout is deprecated",
 DeprecationWarning,
 stacklevel=2,
)
 return self._extras["timeout"]

 @property
 def runtime(self):
 warnings.warn(
 "procrunner return object .runtime is deprecated",
 DeprecationWarning,
 stacklevel=2,
)
 return self._extras["runtime"]

 @property
 def time_start(self):
 warnings.warn(
 "procrunner return object .time_start is deprecated",
 DeprecationWarning,
 stacklevel=2,
)
 return self._extras["time_start"]

 @property
 def time_end(self):
 warnings.warn(
 "procrunner return object .time_end is deprecated",
 DeprecationWarning,
 stacklevel=2,
)
 return self._extras["time_end"]

 def update(self, dictionary):
 self._extras.update(dictionary)

def _deprecate_argument_calling(f):
 @functools.wraps(f)
 def wrapper(*args, **kwargs):
 if len(args) > 1:
 warnings.warn(
 "Calling procrunner.run() with unnamed arguments (apart from "
 "the command) is deprecated. Use keyword arguments instead.",
 DeprecationWarning,
 stacklevel=2,
)
 return f(*args, **kwargs)

 return wrapper

[docs]@_deprecate_argument_calling
def run(
 command,
 timeout=None,
 debug=None,
 stdin=None,
 print_stdout=True,
 print_stderr=True,
 callback_stdout=None,
 callback_stderr=None,
 environment=None,
 environment_override=None,
 win32resolve=True,
 working_directory=None,
 raise_timeout_exception=False,
):
 """
 Run an external process.

 File system path objects (PEP-519) are accepted in the command, environment,
 and working directory arguments.

 :param array command: Command line to be run, specified as array.
 :param timeout: Terminate program execution after this many seconds.
 :param boolean debug: Enable further debug messages. (deprecated)
 :param stdin: Optional bytestring that is passed to command stdin,
 or subprocess.DEVNULL to disable stdin.
 :param boolean print_stdout: Pass stdout through to sys.stdout.
 :param boolean print_stderr: Pass stderr through to sys.stderr.
 :param callback_stdout: Optional function which is called for each
 stdout line.
 :param callback_stderr: Optional function which is called for each
 stderr line.
 :param dict environment: The full execution environment for the command.
 :param dict environment_override: Change environment variables from the
 current values for command execution.
 :param boolean win32resolve: If on Windows, find the appropriate executable
 first. This allows running of .bat, .cmd, etc.
 files without explicitly specifying their
 extension.
 :param string working_directory: If specified, run the executable from
 within this working directory.
 :param boolean raise_timeout_exception: Forward compatibility flag. If set
 then a subprocess.TimeoutExpired exception is raised
 instead of returning an object that can be checked
 for a timeout condition. Defaults to False, will be
 changed to True in a future release.
 :return: The exit code, stdout, stderr (separately, as byte strings)
 as a subprocess.CompletedProcess object.
 """

 time_start = time.strftime("%Y-%m-%d %H:%M:%S GMT", time.gmtime())
 logger.debug("Starting external process: %s", command)

 if stdin is None:
 stdin_pipe = None
 elif isinstance(stdin, int):
 assert (
 stdin == subprocess.DEVNULL
), "stdin argument only allows subprocess.DEVNULL as numeric argument"
 stdin_pipe = subprocess.DEVNULL
 stdin = None
 else:
 assert sys.platform != "win32", "stdin argument not supported on Windows"
 stdin_pipe = subprocess.PIPE
 if debug is not None:
 warnings.warn(
 "Use of the debug parameter is deprecated", DeprecationWarning, stacklevel=3
)

 start_time = timeit.default_timer()
 if timeout is not None:
 max_time = start_time + timeout
 if not raise_timeout_exception:
 warnings.warn(
 "Using procrunner with timeout and without raise_timeout_exception set is deprecated",
 DeprecationWarning,
 stacklevel=3,
)

 if environment is not None:
 env = {key: _path_resolve(environment[key]) for key in environment}
 else:
 env = {key: value for key, value in os.environ.items()}
 if environment_override:
 env.update(
 {
 key: str(_path_resolve(environment_override[key]))
 for key in environment_override
 }
)

 command = tuple(_path_resolve(part) for part in command)
 if win32resolve and sys.platform == "win32":
 command = _windows_resolve(command)
 if working_directory and sys.version_info < (3, 7):
 working_directory = os.fspath(working_directory)

 p = subprocess.Popen(
 command,
 shell=False,
 cwd=working_directory,
 env=env,
 stdin=stdin_pipe,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
)

 thread_pipe_pool = []
 notifyee, notifier = Pipe(False)
 thread_pipe_pool.append(notifyee)
 stdout = _NonBlockingStreamReader(
 p.stdout,
 output=print_stdout,
 debug=debug,
 notify=notifier.close,
 callback=callback_stdout,
)
 notifyee, notifier = Pipe(False)
 thread_pipe_pool.append(notifyee)
 stderr = _NonBlockingStreamReader(
 p.stderr,
 output=print_stderr,
 debug=debug,
 notify=notifier.close,
 callback=callback_stderr,
)
 if stdin is not None:
 notifyee, notifier = Pipe(False)
 thread_pipe_pool.append(notifyee)
 stdin = _NonBlockingStreamWriter(
 p.stdin, data=stdin, debug=debug, notify=notifier.close
)

 timeout_encountered = False

 while (p.returncode is None) and (
 (timeout is None) or (timeit.default_timer() < max_time)
):
 if debug and timeout is not None:
 logger.debug("still running (T%.2fs)", timeit.default_timer() - max_time)

 # wait for some time or until a stream is closed
 try:
 if thread_pipe_pool:
 # Wait for up to 0.5 seconds or for a signal on a remaining stream,
 # which could indicate that the process has terminated.
 try:
 event = thread_pipe_pool[0].poll(0.5)
 except BrokenPipeError as e:
 # on Windows this raises "BrokenPipeError: [Errno 109] The pipe has been ended"
 # which is for all intents and purposes equivalent to a True return value.
 if e.winerror != 109:
 raise
 event = True
 if event:
 # One-shot, so remove stream and watch remaining streams
 thread_pipe_pool.pop(0)
 if debug:
 logger.debug("Event received from stream thread")
 else:
 time.sleep(0.5)
 except KeyboardInterrupt:
 p.kill() # if user pressed Ctrl+C we won't be able to produce a proper report anyway
 # but at least make sure the child process dies with us
 raise

 # check if process is still running
 p.poll()

 if p.returncode is None:
 # timeout condition
 timeout_encountered = True
 if debug:
 logger.debug("timeout (T%.2fs)", timeit.default_timer() - max_time)

 # send terminate signal and wait some time for buffers to be read
 p.terminate()
 if thread_pipe_pool:
 try:
 thread_pipe_pool[0].poll(0.5)
 except BrokenPipeError as e:
 # on Windows this raises "BrokenPipeError: [Errno 109] The pipe has been ended"
 # which is for all intents and purposes equivalent to a True return value.
 if e.winerror != 109:
 raise
 thread_pipe_pool.pop(0)
 if not stdout.has_finished() or not stderr.has_finished():
 time.sleep(2)
 p.poll()

 if p.returncode is None:
 # thread still alive
 # send kill signal and wait some more time for buffers to be read
 p.kill()
 if thread_pipe_pool:
 try:
 thread_pipe_pool[0].poll(0.5)
 except BrokenPipeError as e:
 # on Windows this raises "BrokenPipeError: [Errno 109] The pipe has been ended"
 # which is for all intents and purposes equivalent to a True return value.
 if e.winerror != 109:
 raise
 thread_pipe_pool.pop(0)
 if not stdout.has_finished() or not stderr.has_finished():
 time.sleep(5)
 p.poll()

 if p.returncode is None:
 raise RuntimeError("Process won't terminate")

 runtime = timeit.default_timer() - start_time
 if timeout is not None:
 logger.debug(
 "Process ended after %.1f seconds with exit code %d (T%.2fs)",
 runtime,
 p.returncode,
 timeit.default_timer() - max_time,
)
 else:
 logger.debug(
 "Process ended after %.1f seconds with exit code %d", runtime, p.returncode
)

 stdout = stdout.get_output()
 stderr = stderr.get_output()

 if timeout_encountered and raise_timeout_exception:
 raise subprocess.TimeoutExpired(
 cmd=command, timeout=timeout, output=stdout, stderr=stderr
)

 time_end = time.strftime("%Y-%m-%d %H:%M:%S GMT", time.gmtime())
 result = ReturnObject(
 exitcode=p.returncode,
 command=command,
 stdout=stdout,
 stderr=stderr,
 timeout=timeout_encountered,
 runtime=runtime,
 time_start=time_start,
 time_end=time_end,
)
 if stdin is not None:
 result.update(
 {
 "stdin_bytes_sent": stdin.bytes_sent(),
 "stdin_bytes_remain": stdin.bytes_remaining(),
 }
)

 return result

 _static/up-pressed.png

_images/master.png
@ BUILDING.

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to ProcRunner’s documentation!

 		
 ProcRunner

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 API

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Contributors

 		
 History

 		
 2.3.2 (2022-01-28)

 		
 2.3.1 (2021-10-25)

 		
 2.3.0 (2020-10-29)

 		
 2.2.0 (2020-09-07)

 		
 2.1.0 (2020-09-05)

 		
 2.0.0 (2020-06-24)

 		
 1.1.0 (2019-11-04)

 		
 1.0.2 (2019-05-20)

 		
 1.0.1 (2019-04-16)

 		
 1.0.0 (2019-03-25)

 		
 0.9.1 (2019-02-22)

 		
 0.9.0 (2018-12-07)

 		
 0.8.1 (2018-12-04)

 		
 0.8.0 (2018-10-09)

 		
 0.7.2 (2018-10-05)

 		
 0.7.1 (2018-09-03)

 		
 0.7.0 (2018-05-13)

 		
 0.6.1 (2018-05-02)

 		
 0.6.0 (2018-05-02)

 		
 0.5.1 (2018-04-27)

 		
 0.5.0 (2018-04-26)

 		
 0.4.0 (2018-04-23)

 		
 0.3.0 (2018-04-17)

 		
 0.2.0 (2018-03-12)

 		
 0.1.0 (2018-03-12)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

